براورد رواناب با استفاده از استنتاج عصبی فازی و رگرسیون درحوضه ی آبریز دز

نویسندگان

  • صابر معظمی گودرزی استادیار دانشکده فنی و مهندسی،دانشگاه ازاد اسلامی،واحد اسلامشهر،اسلامشهر-ایران
  • غزاله احمدیان احمدآباد دانش اموخته کارشناسی ارشددانشکده فنی و مهندسی،دانشگاه ازاد اسلامی،واحد اسلامشهر،اسلامشهر-ایران
  • محمود ذاکری نیری باشگاه پژوهشگران جوان و نخبگان،استادیار دانشگاه آزاد اسلامی-واحد اسلامشهر،اسلامشهر،ایران
چکیده مقاله:

تخمین دبی جریان در حوضه آبریز، به دلیل تاثیر ان در مدیریت منابع آب، می تواند نقش اقتصادی مهمی داشته باشد.در این تحقیق، ازمدل های(ANN)،(SVR)و(ANFIS) جهت پیش بینی رواناب حوضه آبریز دزاستفاده شده است. همبستگی بین ایستگاه ها بررسی و ایستگاههای کمندان،زورآباد و دره تخت به دلیل همبستگی اندک  با ایستگاههای اطراف،حذف شدند سپس به دلیل عدم بررسی دخالت انسانی، با استفاده از نرم افزارxlstatروند ایستگاهها بررسی و ایستگاههای فاقد روند انتخاب شدند.جهت ارزیابی عملکرد مدل ها ازضریب همبستگی(R)،ضریب نش-ساتکلیف (NSE)وریشه ی میانگین مربعات خطا(RMSE)استفاده شده است.نتایج این تحقیق حاکی از برتریANFISبا رویکردکلاسترینگ نسبت به رویکرد شبکه بندی است.مدل های(ANN)،(ANFIS)و(SVR) توانایی خوبی در شبیه سازی جریان حوضه آبریز دز داشته اند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی بارش- رواناب با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) و رگرسیون خطی چندمتغیره (MLR)

در این پژوهش، کارآیی سیستم فازی- عصبی برای برآورد رواناب ناحیه کوهستانی حوضه هراز مورد ارزیابی قرار گرفت. هدف ایجاد مدلی با توابع و درجه عضویت مناسب است که بتواند رابطه بارندگی- رواناب را در یک حوضه به­درستی برقرار کند. بدین منظور برای پیش­بینی رواناب، 44 ترکیب مختلف از پارامترهای بارندگی، دما، تبخیر، دبی جریان و شاخص بارش پیشین با تأخیر زمانی بین آنها به­صورت روزانه طی دوره 32 سال آماری وارد م...

متن کامل

پیش‌بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی

مدل‏های مفهومی ‌بر مبنای هوش مصنوعی، اغلب برای پیش‌بینی‏های کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش‌بینی‌ها1 (ESP) و تفکیک مدل‏سازی برای متغیرهای اقلیمی‌و هیدرولوژیکی، از مدل‏های مفهومی ‌برای پیش‌بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می‌شود. سیستم استنتاج فازی برای پیش‌بینی بار...

متن کامل

پیش بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی

مدل‏های مفهومی بر مبنای هوش مصنوعی، اغلب برای پیش بینی‏های کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش بینی ها1 (esp) و تفکیک مدل‏سازی برای متغیرهای اقلیمی و هیدرولوژیکی، از مدل‏های مفهومی برای پیش بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می شود. سیستم استنتاج فازی برای پیش بینی بارش فصلی به صور...

متن کامل

تاثیر توزیع‌های احتمالاتی در افزایش دقت پیش‌بینی رسوب معلق با استفاده از شبکه‌های عصبی مصنوعی و سیستم استنتاج فازی-عصبی(مطالعه موردی: حوزه آبخیز سد دز)

توجه به ماهیت داده­های رسوب و انتخاب روش­های مناسب پردازش بر روی داده­ها قبل از ورود به مدل­های هوش مصنوعی از جمله مواردی است که می­تواند نتایج حاصل از شبیه­سازی­ها را به واقعیت نزدیک سازد. در این تحقیق تأثیر روش­های پردازش داده­های رسوب قبل از ورود به دو مدل شبکه­های عصبی مصنوعی و سیستم­های استنتاج فازی-عصبی در هفت ایستگاه حوضه سد دز مورد بررسی قرار گرفته است. بر این اساس با توجه به توزیع­های ...

متن کامل

پیش‌پردازش پارامترهای ورودی به شبکه‌ی عصبی مصنوعی و سیستم استنتاج تطبیقی عصبی- فازی با استفاده از رگرسیون گام به گام و گاماتست به‌منظور تخمین تبخیر

فرایند تبخیر به­علت نیاز به فاکتورهای اقلیمی مختلف و اثر متقابل این فاکتورها بر یکدیگر،یک پدیده­یغیرخطی و پیچیده است. یکی از مراحل پیچیده در مدل­سازی غیرخطی، پیش­پردازش پارامترهای ورودی برای انتخاب ترکیبی مناسب از آن­ها است. پیش­پردازش داده­ها سبب کاهش مراحل سعی و خطا و شناخت مهم­ترین پارامترهای مؤثر بر پدیده­ی مورد نظر به­منظور مدل­سازی با استفاده از روش­های هوشمند می­شود. در این پژوهش از دو ر...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 13  شماره 47

صفحات  57- 68

تاریخ انتشار 2019-08-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023